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A Bedside Readers Guide to the

- Conventionalist Philosophy of Mathematics

by Graham Priest

0. The following paper falls into several loosely connected parts,
which, however, represent a continuous train of thought. Part one

is an analysis of the problems with which the philesophy of mathematic
concerns itself; we consider it worthwhile to go back to first
principles occasionally since in a subject as old and involved as

this it is only too easy to lose the wood for the trees.

Parts two, three, four and five are a review of the most
influential views held on the problems in the last century, in the
light of our analysis. We do not follow arguments into gruesome
detail, and these sections are intended to be a catalyst and touch-
stone for the views of the reader as much as an establishment of the
final conclusions.

Section five, although part of the above review, lays the
foundation for the most important section of the paper, section six,
vhich is an analysis of the meaning for conventionalism of G&del's
incompleteness theorem.

1. All the problems concerning the philosophy of mathematics can
be neatly summarised by the question:

Question 0 What is (pure) mathematics?

The question of course hides a multitude of sins and we must be
much more precise.

Firstly, what is meant by 'mathematics'? The only answer ve
can give without begging the question is 'That which is done and has
been done for the last four thousand years by mathematicians.' This
answer will be more helpful than it looks. (Incidentally, if the
above question came from a particular person, the best, and in a
sense, only answer, would be to teach him or her mathematics.
However, this would not sell many philosophy books.)

Knowledge of the nature of mathematics lies in an ability to
do it. Which is why it has often been the case that some good has
come out of mathematicians reflecting on the nature of mathematics,
whilst this can rarely be said of any philosopher, who was not also
a mathematician.

Now, what is it that mathematicians do? They are interested in
establishing the truth or otherwise of certain statements. If we then
had a complete answer to the following question, we would be in a
position to form an ansver to question zero.
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Question 1
Why are the truths of mathematics true?

Any reasonable answer to the above question must also permit
reasonable answers to the following questions.

Queétion.l (a)

Why is it that such truths appear necessary and inviolable, and
why are we unable to conceive them being false?

Question 1 (b)

How is it that we come to know such truths?

Question 1 (c)

Why is it that truths of mathematics can be applied in practical
matters e.g. surveying, building bridges, sending rockets to the
moon, etec. In short, why are they useful?

These are epistemological considerations which must clearly be
answered. Yet it is surprising that most philosophies of mathematics
fail to satisfy one or other of these. One pulls mathematics towards
the transcendent, and the others to the immanent; almost, it seems,
incompatibly so. -

Now, how does a matheématician establish these truths? A small
number of truths are basic. Their truth is axiomatic in both senses
of the word. Any others have to be proved. That is, they have to
follow logically from these basic truths (we use the word 'logically'
in a loose, naive sense). That is, the sentence which states that
the truth is implied by (a finite subset of) the axioms must be a
logical truth. '

Any adequate philosophy of mathematics must hence answer question
1, 1(a), 1(b), and 1(c) with respect to logical truths as well as
purely mathematical truths. ‘ o

This is a simple point,:but agein it is sﬁrprising that many of
the philosophies of mathematics are found wanting here. From now on,
vhen we speak of mathematical truths we include logical truths.

Now the naive answer to question one is that mathematical truths
are so because they are true of certain objects such as numbers,
functions; propositions, points, groups, models etc., i.e. these are
what mathematics is about.

We must hence be able to ansver:
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Question 2

What exactly are the above objects, and in what sense do they
exist?

Further, the impression we get that these objects do exist objectively
and we do actually study them is so strong that question two must
continue; ‘

Question 2 cont'd.

And if they don't exist, why is it that we have such a strong
impression that they do?

Question two, although subsidiary to question one, has been the
main battle-ground for philosophers considering the subject.

We see then that questions one and two are the hard core of
the problem. Now we have got this straight, let us look at some
answers. .

2. The first two philosophies we consider attack the problem via
question two. '

Platonism

We consider platonism first since it is prior to the others
historically and also since it is closest to what a mathematician
‘thinks he is doing when he is actually doing mathematics. It is also
the most prevalent view amongst mathematicians past and present, and
is usually accepted by them unquestioningly or uncritically.

(In fact, there is a great tendency amongst present mathematicians to
think of everything that is not mathematics as unworthy of serious
attention by their superior minds and to become mathematical ostriches.

But I digress.)

An outstanding exception to the above, however, is G&del, and for
a lucid and cogent. account of platonism, see (1).

Now we have noted that when a mathematician is actually doing
mathematics, he feels he is studying external, objective objects and
discovering the relationships between them. This is precisely what
platonism advocates, and this is its answer to question two.

Its answer to question one is that mathematical truths are true
because they state correctly the relationships between these objects.

Now, apart from the fact that the exact nature of the existence
of these metaphysical objects is very obscure, it is also the case
that platonism is unsatisfactory with respect to question 1(a) and
totally inadequate with respect to 1(b).
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1(a) According to platonism "1 + 1 = 2" states a relationship between
the objects one and two (and perhaps plus, also). It is, however, a

de facto relationship in the external world. From whence therefore
does it derive its inviolability?

1§b2 Platonism advocates that we know of these truths by our
'mathematical intuition'. Apart from Plato (whose account it is now
very difficult to take seriously) no one has attempted to explain
exactly what this is; why it is wrong sometimes, right others; and
how it works physiologically. :

"If we have got this sixth sense, then it should be possible to
examine it scientifically. Yet this has never been suggested, let
alone attempted, because it is absurd.

Further, if we accept 'mathematical intuition' we must also
accept 'ethical intuition' which perceives justice, goodness etc.,
'sociological intuition' which perceives societies, economies etc.,
‘and one for every other sort of universal we know.

Platonism must be rejected as an inadequate philosophy of
mathematics.

Constructivism

We next consider intuitionism and other forms .of constructivism
between which, for our purposes, we need not distinguish. For an
exposition of intuitionism see (2). :

One of the basic problems of platonism was, we saw, how we come
to know the truth about mathematical objects. For constructivism
this is no problem, for mathematical objects are 'mental entities'
which, in some sense, we construct ourselves. Constructivism then
has no problem with question 1(b). The exact nature of these mental
‘entities is a moot point and we will discuss question two no further.

The really awkward question for constructivism is, however, 1l(a).
If mathematical objects are subjective mental constructions, from
whence derives their air of stability and objectivity? Why even do
we all appear to effect the same construction? Very strange!

Further, if they really are my own constructions why can I not
construct 1 + 1 to be equal to 3 if I want to; it would seem that
I have less power over my conscious actions than I have over my
reflexes. ' '

But there is a much more serious objection yet; so far we have
been playing the constructivist on his home ground.

It is well known that it is impossible to secure all of classical
analysis, let alone mathematics, constructively, and so the constructivis
fails to answer the question, since our definition of mathematics was
'that which is done by mathematicians'.
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If a constructivist wants to call constructive mathematics
'true mathematics' then we won't quibble about words. But what then
is it that a 'classical' mathematician is doing?

The situation is not symmetrical. When asked what it is that a
constructivist is doing, a classical mathematician can reply that he
is studying that part of mathematics that is obtainable constructively

Since mathematics goes beyond the bounds of constructive
mathematics, however, a constructivist has no answer to a similar
question about a classical mathematician. '

We must dismiss constructivism as an inadequéte philosophy of
mathematics. ’

3. Logicism

It is clear to any working mathematician that he studies two
sorts of systems (we leave the word deliberately vague and exclude
logic for the moment).

Those such as number theory, set theory and Euclidean geometry
were each originally assumed to possess a unique subject matter, viz:
numbers, sets, lines and points. These systems were supposed to be

categorical,

Others such as topology, group theory, functional analysis,
Riemannian geometry, were never expected to be categorical. For
example, group theory is the study of what all groups have in common.
That is, what follows from the definition of what a group is.

In general, studies of the latter sort are studies of what
follows from a basic set of conditions, which are usually generalisatic
or slight modifications of conditions occurring naturally in analysis

or geometry.

Hence in the former subjects, one need never know a list of
axioms (e.g. number theory was done for many thousand years before
Peano) which are essentially a post-hoc characterization or attempted
characterization of what is already going on.

Whereas in the latter, one learns the axioms right at the start
of the subject (e.g. the first chapter of any introduction to topology
is a specification of the conditions that a structure must satisfy
in order to be a topological space) and they are a pre-hoc character-
ization of what one is studying.

The latter sort of system is simpler philosophically. We saw
that we could reduce the problem of mathematical truth to the pair
of problems, (i) why are the basic truths true, and (ii) why is logic
true? For the latter systems, the basic truths are true by our own
fiat. The axioms of ring theory are true because that is what we
define a 'ring' to be. Hence the problem reduces to the nature of
logical truths.

\
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This approach will not, however, work for systems of the former
sort, where the axioms are not true-by-definition. Indeed, there is
not even a complete axiom system for two of the former systems, nor
"a categorical system for any of them.

What has this to do with logicism?

Logicism is strictly out of place in this review since it is not
a philosophy of mathematics, but a reduction program. For an
exposition of logicism see e.g. (3).

Had logicism worked (and it was a very near miss), it would have
proved that all mathematical truths are in fact truths of pure logic.

This is true, as we saw, for systems of the latter kind above.
Logicism, if correct, would have shown this true for systems of the
former sort also.

It is accepted now, however, that logicism failed: apart from
any considerations of incompleteness, Russell had to import two
extra-logical axioms, choice and infinity. Even if it had succeeded
however, it would still have been left with the awkward problem of
vhy logical truths are true.

Further, logicism is highly unsatisfactory with respect to
question two. Frege assumed the existence of sets and Russell
propositional functions, both of which are highly problematical abstrac
objects. : : .

Hence, logicism cannot provide a foundation for mathematics.

4, We next look at two philosophies that approach the problem via
question one.

Empiricism

We give this name. to the line of thought advocated by Mill and
his followers, see e.g. (4). The starting point here is question 1(b)
How do we know mathematical truths are true?

According to this school, all mathematical statements are
empirical but confirmed to & very high degree. For example, when we
see one object and one object put together we usually see two objects.
We hence conclude that 1 + 1 = 2 in the way we conclude any other
'law of nature'.

Empiricism falls down very badly however on questions 1l(a) and
2. 4

1(a) For if empiricism were correct, there ought to be some
circumstances which would make us inclined to deny that 1 + 1 =2, I
can think of no such circumstances however. For example, if whenever
we put one object next to another we always found that there was one
object, we would not conclude that 1 + 1 = 1; we would reformulate
our scientific laws to allow for some sort of fusion of objects.



121

So empiricism does not explain the apparent necessity of
mathematical statements. This becomes very clear when we consider
the truths of logic. It is not the case that '(p and q) implies p'
is true, solely because whenever we can assert p and can assert q,
we usually find that we can assert p.

2. Secondly, empiricism can only possibly explain why A
sentences are true (i.e. sentences with only predicates, cons%ants,
connectives and bounded quantifiers - in arithmetic, these are
precisely the statements whose truth or falsity can be effectively
established. If we have a true sentence of the form Hx$(x) and there
is no effective way of finding such an x, then empiricism offers no
explanation at all as to why this is true or even what it means.

Since the nature of the existence of mathematical objects is
reflected in the meaning of the quantifiers, empiricism has no
answer to question two. :

Hence we must reject empiricism as an inadequate philosophy.

Formalism

We next consider formalism. This like constructivism covers
a wide range of views, but here we will have to differentiate.

a) Hilbert's original formalism was not so much a philosophy of
mathematics as a program for ensuring that mathematics never again
received rude shocks such as Russell's paradox. See e.g. (12).
However, there is the germ of a philosophical theory in the way he
intended to carry this out.

He considered mathematics to be of two sorts, finitary and ideal.
The distinction is well worn and needs no elaboration except to
remark that forty years later we still do not know exactly where
the boundary is, or indeed if there is one.

The rationale of finitary mathematics is simple. A mathematician
can do what he likes provided it is consistent, the final arbiter
being utility (in pure and applied mathematics) and intrinsic beauty.

Finitary reasoning on the other hand is very far from arbitrary;
as can be seen from the fact that Hilbert insisted that all methods
in metamathematics should be finitary, since these were the only ones
that inspire absolute certainty.

But here Hilbert fails to go further. Why does finitary
mathematics inspire such certainty? Why in short are the truths of
finitary mathematics true and moreover, obviously true? Clearly
this is just problem one.

So even if one accepts the distinction between finitary and
ideal mathematics and accepts that a mathematician can do what he
likes and invent whatever objects and realms of objects he likes subje
only to consistency (and these are very big if's), one still has our
original problems with a smaller more basic part of mathematics.
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If one could guess what Hilbert thought about these problems
(and indeed what has been advocated by others trying to justify
finity reasoning) one would probably arrive at one of the following:

either i) All finitary statements are AO and hence we can look to
empiricism for an answer.

So nine plus four is thirteen, because if I put down nine
matches and next to them another four, I can count and see that I have
thirteen., Now in view of the probable finiteness of the universe,
even if the Albert Hall had been full of monkeys making matches since
the beginning of time, there would still be but a finite number of
matches in.the universe. The identification of numbers with
concrete objects will not, therefore, work.

Further we have already seen that empiricism can give no
adequate answer to question 1l(a), the necessity of mathematical truths.

or ii) One can take a more intuitionist line here since
constructivist techniques generate all of finitary mathematics. We
can say that numbers are mental constructions and that 1 + 1 = 2 is
so because I have constructed it to be so.

Now we have already seen that this point of view does not
explain the objectivity let alone the necessity of mathematical truths
and so fails on question 1(a).

However, we will point out that this view fails on account of
question 1(c) also. Why is it that the objects that I construct seem
to tell me something about the external world?

_ For example, I know that if I take a matchstick out of my left
hand pocket and another out of my right hand pocket and put them on the
table in front of me, then failing some political nuclear insanity or
other act of God, I shall see two matchsticks there; if "1 + 1 = 2"
is true by my own fiat however, it is not clear why.

Hilbert's philosophy must rate as another near miss, but until
a good justification for finitary reasoning can be found, it must
remain inadequate. '

b) There was a type of formalist philosophy in the early days of
formalism which said that e.g. arithmetic is nothing but the study of
some particular formal system of arithmetic and the truth is just
provability in this system. ’

It is difficult to see how this could ever have been taken
seriously since there are so many objections to it. We will list four:

1) Formalization is a post-hoc characterization of arithmetic.
2) This denies the existence of mathematical objects but does not

explain why we have such a strong impression that they do exist. It
does not answer therefore, question two.
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3) This sort of theory cannot explain why logical truths are true
since in any formal system of logic, logic is necessary to derive
the theorems from the axioms. o

4) This position is untenable in view of G&del's proof that no formal
system of arithmetic. can capture all the true statements of arithmetic.

"An extension of this phiiosophy to take account of 4) above has
been proposed by Curry, see e.g. (6); he advocates that mathematics
is the study of all formal systems. : .

Now we will not discuss whether this philosopby can give a
satisfactory answer to question 1(c), i.e. why it is that some formal
systems are so useful, or 1(b), why some of these systems force
themselves on us so strongly; but we will point out that this
philosophy falls foul of points 1, 2 and 3 above.

Condition 2 is fairly obvious. We will elaborate 1 and 3.

1) Axiomatization and formalization are things which happened to
number theory and set theory a long time after they were first

studied. They are not therefore basic to the subject. Even after

a theory has been formalized, this makes no difference to the practising
mathematician, e.g. the number theorist whose subject of study is
numbers, not formal arithmetic.

As Curry himself says in (13): "Acceptability [ of a formal
system ] is usually a matter of interpreting the theory in relation
to some subject matter ... In an interpretation we associate them
[ predicates ] with certain intuitive notions.” :

Arithmetic is precisely the study of the intuitive notions of
number, addition ete., and not of formal systems of arithmetic.

Look at it another way. If mathematics is the study of formal
systems, what sort of study is it? What sort of tools are we allowed
to use? It is the mathematical study of formal systems. We come
full circle. ' :

3) The 'truths' of a formal system are those which are derivable
in it, i.e. are logical consequences of the axioms. But what of logic?

According to a formalist, logical truths are those things -
provable in some formal system of logic, but this is impossible. For
to follow Quine, if logic is to follow mediately from axioms, then
logic is itself needed to infer logic from the axioms. In other words,
a person cannot know what logic is by deriving it in some formal
system, since this would require prior knowledge of logic. .

For a fuller account see (5).

We must reject this view of the foundations of mathematics as
not only inadequate but as putting the cart before the horse,
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5, Finally in this review we consider conventionalism.

Conventionalism

Conventionalism is well in keeping with the general trend of 20th
century philosophy.

It has at last been realised that the language we speask is not
merely a passive vehicle in the communication of our thoughts, but
is an active agent in determining how we can and do think. What
cannot be said cannot be thought; there is no such thing as a concept
without some description of it in the language. (See e.g. the appendix

to (10).)

If it is false to say that rational thinking is precisely a
subconscious manipulation of the thinker's native tongue, then the
truth is certainly much nearer to this extreme than to the classical
conception of the nature of thought. And this explains why logic,
the theory of the structure of our language, was for so long
conceived of as the laws of thought.

For an exposition of conventionalism we turn to the later
Carnap, especially (9), Ayer (14) and an intelligent interpretation
of the later Wittgenstein, e.g. some of the better parts of (8).

Now each of us has a native language which we use to talk and
think, and the following is a summary of the aspects of natural
language which are important for conventionalism.

Every language is governed by syntactic and semantic regularities
or rules which are in the nature of conventions (see (10) for a good
analysis of the nature of implicit convention) and which give the
language both a syntactic and a semantic structure. With each word
of the language we can associate a reasonably precise usage or
meaning and words can be combined into sentences which, when uttered
under certain circumstances may be correct (true) or not.

Conventionalism asserts that a truth of mathematics* or logic
is true in virtue of the meanings of its constituent words. That is,
the semantic rules which govern the use of its component words and
the manner in which they are put together, ensure that it is always
correct to assert the sentence. More picturesquely, the sentences
of mathematics and logic are true because they picture the semantic
structure of the language.

Or, if one doubts the meaningfulness of the above explanation
(say if one shares the doubts of Quine in (11)), we can put it this
way. The statements of logic and the basic statements of mathematics
are true because we are determined that they are to be true (i.e. it

% By mathematics we here mean arithmetic, set theory and Euclidean
geometry. We saw in section 3 that all other branches of mathematics

could be reduced to logic.
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is always correct to assert them) and to remain so, come what may;
there is no evidence that we would allow to count against them.

This is the answer of conventionalism to question one. The
answers to questions 1(a), (b) and (¢), follow.

1(a) Mathematical truths are necessarily true because the semantic
rules of the language alone are sufficient to ensure their truth.
Under no possible physical circumstances could they therefore be

false.

To put it another way, they are necessarily true (i.e. could ‘
not possibly be false) because we will never allow them to be false.
We cannot conceive of them being false since, as there are no
circumstances we could count as falsifying them, there are none
we can conceive of.

It is often said that such truths are true by convention, i.e.
the conventions we have governing the use of words. This is a very
misleading way to put it since this could in fact be said about

- any true sentence.

Further, it has led to the objection that conventionalism
cannot show mathematical truths to be necessary since we could well
have had other conventions. This objection misses the point however.
Mathematical truths are fixed in truth value for exactly the same
reason that a frame of reference in mechanics or co-ordinate
geometry is fixed in position.

1(b) We come to know the truths of logic and basic mathematics
because they are part of our native tongue: we learn which sentences;
of logic, arithmetic, set theory and geometry are true when we learn
to speak and to use the words 'and', 'not', 'two', 'collection',
'point', etc. correctly, i.e. as everybody else uses them.

Now at this point it is worth noting that with a few moot cases,
vwhatever natural language one learns first, one learns the same
mathematics and logic. That is, all natural languages seem to have
the 'same' (i.e, isomorphic) logico-mathematical parts. (But this
is not all they have in common of course.) This may point to the
fact as Chomsky asserts that we all have an innate tendency
(possibly physiological) to speak certain sorts of language. Or it
might indicate that all the world languages share a common root.
However, this is not relevant to the present discussion.

1(c) Why is it that mathematics has practical application?
Natural language has developed by linguistic evolutiont where

the criterion for the retention of something new, as in animal
evolution, is its usefulness. It is not therefore surprising that

+ And is of course still evolving. Language is not static and fixed
but is in a constant state of flux. The same can be said for that
part of language which is mathematics; it also is constantly

developing.
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mathematics being part contained in natural language, part an
extension of it, partakes of this usefulness.

But more precisely, we have seen that logico-mathematic truths
are true independent of any non-linguistic considerations. In a
sense, therefore, they have no factual content. How can they therefor
be useful?

The answer is this. Given any correct factual description of
a situation, by using the logico-mathematical truths (which embody
the semantic rules of the language) we can establish other correct
factual descriptions. These may not be logically new but will
probably be psychologically new and therefore give us new information
about the situation.

However, there 1s more to it than this. Everything we have so
far said about conventionalism is true of the whole analytic part of
language, not just the mathematical part. So why mathematics?

The answer to this lies in the origins of the subject. Mathemati
as practised by the Babylonians and Egyptians was a practical subject,
concerned with measuring fields, building pyramids, counting herds
of animals, etc. So mathematics was that part of language whose
function was to describe practical matters. Mathematics therefore
had practical applications for the same reason that the theory of
music has musical applications.

Some of modern mathematics has inherited this function. One only
has to look to see that the most useful parts of mathematics are
those which have developed from the oldest parts of mathematics viz.
arithmetic and geometry. The newer bits like the theory of trans-
finite numbers are relatively useless.

2) Ve must now consider how conventionalism deals with question
two: +the existence of mathematical objects.

Questions of the existence of mathematical objects must be
divided into two sorts. Those which are answerable within the frame-
work of our language and those which are not.

For example, we can ask whether there are prime numbers greater.
than 100. We have well defined procedures for determining whether
there are or not. Or we can ask whether there are any numbers (as
we can ask whether there are any unicorns) and the answer is yes
since e.g. seventeen is a number.

We cannot transcend the language however, and try to talk about
'reality'. To ask whether numbers really do exist, in the meta-
physical sense is a meaningless question to which no clear sense can
be attribvuted,

We must then ask why it is that mathematical objects 'seem to
exist in reality', i.e. why platonism is the naive philosophy of
mathematics.
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This is so for the same reason that we naively believe that
physical objects 'really exist', Namely, because they are part of
the structure that is imposed on the world by the form of language
we use, which governs the way we think.

Perhaps a well wora analogy will help to clarify matters. In
some respects, the language 'game' is rather like a game of chess.

Now when we play chess, all we do is move wooden pieces on a
wooden board. As any chess player knows, however, this is not what
he 'sees' when he looks at a board during a game. The symbols of the
game become more than just pieces of wood. Pieces take on their
moves, so that e.g. a bishop becomes a pair of diagonals across the
board. The whole thing takes on a separate existence as a complex
three dimensional lattice (the third dimension being the order of
moves) of which certain paths are highlighted as possible strategies.

So it is with language. Language is, in fact, only a series
of physical occurrences, made and observed. But to the user these
signs are more than this, The words and sentences take on their
meanings, and this is why to a mathematician, what he is doing is
somewhat more than merely manipulating words.

The difference is that between a person who speaks Spanish and
a person who merely reads sentences out of a phrase book. They may
both utter exactly the same sounds but the mental processes involved
are somewhat different.

We see then that conventionalism is the only philosophy we have
considered which addresses all the problems of the philosophy of
mathematics squarely. It is therefore the only adequate philosophy.

6. In the last part of the paper I will consider the consequences
for conventionalism of G8del's incompleteness theorem.

Now platonism as a philosophy of mathematics has been much
weakened recently by the discovery of various incompleteness results
for axiomatic arithmetic and set theory.

From a conventionalist point of view however, there is no reason
why mathematics should be decidable, categorical, syntactically
complete or even that it should be able to prove its own consistency:
but it is often said in an attempt to refute conventionalism that in
any language sufficient for a large part of arithmetic, there are
true statements which are not provable.

Now, if as conventionalism asserts, a mathematical truth is one
that is assertable (provable) in our ordinary language, this could
not be the case.

As it stands, this objection is fallacious, but we will consider
it to see if it can be made to stick.
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A) Firstly, Gddel's first incompleteness theorem holds only for a
consistent, axiomatic, formal theory, and any natural language is
very far from being this.

It seems reasonable, however, to suppose that a natural
language (for the sake of definiteness let us take English as it is
spoken in London in 1972) could at least in principle be formalized.
That is, its grammar regularized, ambiguities eliminated, etc. But
it is not at all clear that it, or even the logico-mathematical part
we are interested in, could be axiomatized.

And, if conventionalism is correct and if all else in Gddel's
theorem holds, we must indeed be in the situation where it cannot
possibly be axiomatic.

This would mean that somehow in learning our native tongue we
learn to assert a non recursively enumerable set of sentences. This
does not seem very likely, but if it were true it would be a very
significant result, since assuming Church's thesis, it would show that
language learning is non-effective.

B) We can go another way however. Let us assume that it is possible
to make English into a consistent axiomatic formal system. The
conditions for G&del's theorem are then satisfied. It follows that
there is a sentence ¢ such that neither it nor its negation is
provable. Futhermore it is also claimed that ¢ is true.

There are many different proofs of this theorem and many
different ¢'s. Some proofs start by assuming that the true and false
sentences form an exclusive and exhaustive covering of the set of
sentences of arithmetic. In other words, it starts by assuming that
either ¢ or 1 ¢ is true. This is not a very convincing argument for
the truth of ¢.

Let us, however, consider Gddel's original proof. He constructs
an unprovable sentence ¢ and the argument that it is true usually goes
something like this:

"Look at ¢. ¢ asserts in effect (wave of hands) its own unprovability.
Since it is not provable, then what it says is true."

The above argument is usually carried out in as matter-of-fact
a way as possible to try to cover up the non-rigorousness of the

argument.

The weak point of the argument is of course the "in effect".
How exactly does a purely arithmetic statement manage to make a non-
arithmetical statement? If this were the only hope of proving the
truth of ¢ then we would be on very shaky grounds. Fortunately,
however, there is a much better way.

¢ is of the form Vx y(x) and we can prove that for every numeral
n, ¥(n) is proveble. Hence for every member of the standard model of
arithmetic ¢ is true. By the definition of truth, Vx y(x) is therefore
true in the standard model, i.e. ¢ is true.
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This is, I think the best that can be done towards proving the
truth of ¢. .

What are conventionalists to make, however, of the appeal to the
concept of 'the standard model'?

We can make sense of talk of numbers inside our language where
it is an internal question, but as we saw, all talk of 'actual
numbers', the 'standard model' as an external question is meaningless.
Hence we may reject this proof too as fallacious. (We note in
passing that exactly the same argument is sometimes offered to prove
that if Fermat's last theorem is independent of Peano Arithmetic then
it is true.)

C) The truth is, I think, less straight forward than either of
- these p0551b111tles.

Let us suppose that we do accépt the proof of the truth of ¢
given in B). How exactly did we manage to prove it? What formal
machinery would we require to formalize the proof? (Always a good
guide to the nature of the proof.)

We would need a very weak set theoretic metalanguage for
arithmetic. In fact the whole proof can be formalized in a meta-
language based on Z (Zermelo set theory).

We see then that the argument must be done in a metalanguage,
it is impossible to do it in the system itself.

Now English and all other natural languages contain their own
metalanguage (i.e. are semantically closed) and it is precisely for
this reason that we can prove in English that ¢ is true, i.e. why ¢
is assertable in English. :

Now the fact that natural languages contain their own meta-
language has further consequences. The semantic paradoxes {(and I
think we can show the set theoretic paradoxes also) occur in English
precisely because it is semantically closed.

Any reasonably large language that contains its own metalanguage
and which can talk about its own truth, denotation, definability,
etc., will contain semantic paradoxes.

The paradoxes of a) Epimenides and b) Berry are well enough
known not to require further comment.

a) This sentence is false,

b) The least number not definable in less than nineteen syllables
is definable in eighteen syllables.

We note that the idea behind a), b) and G8del's unde01dable sentence
c) are very similar, :

¢) This sentence is not provable (- in effect!)
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The important point however is that the semantic paradoxes occur in
English for exactly the same reason that the truth of ¢ is assertable
in English, viz. English is semantically closed.

Look at it another way. We are assuming that English can be
turned into a formal axiomatic system and that the truth of its G¥del
sentence ¢ can be proved in English. Hence ¢ is assertable (i.e,
provable) in English.

Gédel's theorem states that any such system can prove its own
G8del sentence if and only if it is inconsistent. :

It follows that English is inconsistent. However, we have been
well aware of this fact for a long time: a) and b) are both examples
- of sentences which are both provable and refutable in English.

It is clear then that any language for arithmetic without
‘paradoxes will have an unprovable statement that is true (i.e.
provable in a sufficient metalanguage). Conversely any such system
that can prove all its true statements will have paradoxes. Peano
arithmetic is an example of the first sort of system. English is
an example of the second.

Now there will never be any question of mathematics actually
being done in a formal system, but we shall always wish to formalize
our mathematics since it improves our understanding of what we are
doing. '

What then is the best way to formalize natural language
mathematics?

If the formal system is to be consistent then there is no questio
of it being semantically closed. So perhaps the best we can do is
use not one formal system but a hierarchy Mz of formal systems My s
a < vy, each of which is a metalanguage for the language below it,
For example M, could be Peano Arithmetic, My4y 2 metalanguage for M/
and M, = U M, for limit ordinals A.
o<A

The system would not be properly semantically closed, but we
should be able to talk about any sentence of M, in My for a limit
ordinal A.

For small o, each M would contain true arithmetic sentences
not provable in My by Godel's theorem. But since there are only a
countable number of sentences of Mb this must cease to hold by M .
In fact we can no longer apply G&del's theorem to M, where B is “r
constructive or recursive w, , since MS is not recursively
enumerable, although each M, is for all a < 8.

We could hence regard MB as an approximation to natural
language.

Why, however, should we insist that a formalization should be
consistent? What is wrong with inconsistency?
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Now this brings us to question an assumption we have made
tacitly till now. We have assumed that our formal system must be
based on a classical or intuitionist type logic, and if such a system
is inconsistent then everything is provable in it. Hence the system
is useless. :

But English is not this sort of system however. English is
inconsistent - witness any of the paradoxes, and yet we do not assert
everything in English.

It is not, therefore, a system in which a contradiction implies
anything. Consider the following argument:

The least number not definable in less than 19 syllables is not
definable in less than 19 syllables. (Call this ¢.)

Than ¢ or It is not raining. (1)

But the least number not definable in less than 19 syllables is
definable in 18 syllables. (We have just defined it thus).

Hence Not - ¢. (2)
So by (1) and (2) It is not raining.

The above argument is classically and insuitionistically valid but
would never be accepted by anyone waiting for a bus in the rain.

We see then that English must be formalized in such a way that a
contradiction does not imply everything.

However, for this to happen one of the following rules of inference
must be invalid:

s~ 0 ¢ ~ ¥ ¢ 0: ¢~ v
$ v o~ ¥ v

and it is not at all a simple matter to say which and why, and to
formalize such a logic.

When this has been done we can have systems of limited inconsiste
(i.e. in which some but not all contradictions are provable). For
this is precisely what English is: a system of limited inconsistency
containing its own metalanguage.

Until this sort of logic has been formalized, however, we will
have to be content with a hierarchy of first order metalanguages as
the nearest consistent aspproximation we can get and accept the
consequences.

I should like to thank Sue Haack, John Bell and a number of
other people at Uldum for discussions on the above subjects.
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